1 Aravind (BLRU)

Aravind’s algorithm is presented in [2]. It is based on Lamport’s Bakery algo-
rithm but does not require unbounded registers. Threads have three registers
each: flag and stage are bits, date is an integer register from 0 to N. The bits
are intialized to 0, the date of a thread with id ¢ is initialized at i. There are n
threads, with id’s 0 to n — 1. The maximum bound for the date registers should
be set at N > 2n — 1.

Algorithm 1 Aravind’s BLRU algorithm
1: flag[i] < 1
2: repeat
3 stageli] < 0
4 await V;»; : (flag[j] = 0V date[i] < date[j])
5: stageli] < 1
6
7
8
9

: until V;; : stage[j] =0
: critical section
. date[i] < max(date[0], ..., date[n — 1]) + 1
. if date[i] > N then
10: vjE[O...n—l] : dat(f[j] —

11: stageli] < 0
12: flag[i] < 0

2 Attiya-Welch

These algorithms are presented for 2 threads. In the pseudocode, i refers to
the thread’s own id, j to the other thread’s id. The flag registers are bits, the
turn register ranges over the two thread id’s 7 and j. All registers are initialized
at 0. The original presentation from [3] is given in Algorithm 2. The variant
presentation from [9] is given in Algorithm 3.

Algorithm 2 Attiya-Welch algorithm, original presentation

1: flag[i] < 0

2: await flag[j] =0V turn = j
3: flagli] + 1

4: if turn = 7 then

5: if flag[j] = 1 then
6: goto line 1

7: else

8: await flag[j] =0
9: critical section

10: turn <1

11: flag[i] < 0

Algorithm 3 Attiya-Welch algorithm, variant presentation
1: repeat
2 flagli] < 0
3 await flag[j] =0V turn = j
4 flag[i] + 1
5. until turn = j V flag[j] =0
6
7
8
9

: if turn = j then
await flag[j] =0
: critical section
cturn <1
10: flag[i] < 0

3 Dekker

Dekker’s algorithm was presented by Dijkstra in [4], we base our presentation
here on [1]. The algorithm is designed for two threads, which we once again refer
to as i (me) and j (other). Just like Attiya-Welch and Peterson, each thread
has a bit flag and there is a shared bit turn. All registers are initialized at 0.
See Algorithm 4

Algorithm 4 Dekker’s algorithm
s flagli] + 1
while flag[j] = 1 do
if turn # i then

flag[i] < 0

await turn =1

flagli] < 1
critical section
turn < j
: flag <0

4 Dijkstra

Dijkstra’s algorithm is presented in [5]. Every thread has two bits: b and c.
There is also the shared register & which ranges over thread id’s 0 to n — 1.
While k& is initialized at 0, the bits are all intialized at 1. See Algorithm 5

Algorithm 5 Dijkstra’s algorithm
bli] < 0
if k # i then
cli] + 1
if b[k] = 1 then
k1
goto line 2
else
cli] <0
for j from 0 ton — 1 do
if j #iAcli] =0 then
goto line 2

— =
= O

: critical section
: C[Z] +—1
: b[’L] —1

e
=W N

5 Knuth

This algorithm was presented in [6]. Each thread has a control register which
ranges from 0 to 2. The register k ranges over the thread id’s 0 to n — 1. All
registers are initialized at 0.

Algorithm 6 Knuth’s algorithm
control[i] « 1
for j from k downto 0 do
if j =i then
goto line 12
if control[j] # 0 then
goto line 2

for j from N — 1 downto 0 do
if j =i then
goto line 12
if control[j] # 0 then
goto line 2
: control[i] < 2
: for j from N — 1 downto 0 do
if j # i A control]j] = 2 then
goto line 1

e e e
AN

k1

: critical section
: if ¢ = 0 then
k< N-—-1

: else

k+—i—1

. controlli] < 0

I R R e
N = O © 0 N 3

6 Lamport (3 bit)

This algorithm is presented in [7]. The pseudocode is given in Algorithm 7.

This algorithm is for an arbitrary number of threads. We use id’s 0 to N —1
when there are N threads. The j,y and f variables are private variables in the
range 0 to N — 1. The x;,y; and z; registers are all Boolean variables initially
set to 0.

Lamport’s Three Bit Algorithm makes extensive use of cycles. A cycle, as
defined in [7], is an object of the form (ig, .., %,,) of distinct elements. Two cycles
are the same if they contain the same elements in the same order except for a
cyclic permutation. The first element of a cycle is its smallest element, so we
take as the representative of a cycle a list where the smallest element is at index
0. An ordered cycle has all elements in order from smallest to largest, possibly
only after cyclic permutation. Since our representation of a cycle is a list with
the smallest element at the first position, an ordered cycle can be represented
with a sorted list.

The operation ORD S takes a set S and returns the ordered cycle containing
exactly the elements from S.

In the algorithm, the Boolean function CG(v,7,i;) is used. Here, v is a
Boolean function mapping each element in the cycle =y to either true or false,

and 7; is an element from +.

def
=

CG(v,7,i5) E wlij) = CGV(v,7,)

aet [—w(is1) >0
CGV (v,7,i;) = {U(i(7) 1) 720
" -

The phrase “¢ < j cyclically to k” means that the iteration starts with
it = j, then j gets incremented by 1, modulo the length of the cycle. This
continues until j = k, at which point the iteration stops without executing the
loop with j = k. @ is used for addition modulo the length of the cycle.

Algorithm 7 Lamport’s Three Bit algorithm
oy 1
v < ORD{i | y; = 1}
f + minimum{j € v | CG(z,7,j) =1}
for j «+ f cyclically to i do
if y; =1 then
if z; =1 then z; + 0
goto line 3

L

© ® I

: if z; = 0 then goto line 2

10: for j + i ® 1 cyclically to f do
11: if 2; = 1 then goto line 3
12: critical section

13: z; ¢ 1—2;

14: z; <0

15: y; < 0

7 Peterson

This algorithm is presented for two threads in [8]. The pseudocode is given in
Algorithm 8. In the pseudocode, i refers to the thread’s own id, j to the other
thread’s id. The flag registers are Boolean, the turn register ranges over the
two thread id’s ¢ and j. All registers are initialized at 0.

Algorithm 8 Peterson’s algorithm
: flagli] + 1

2 turn <— 1

: await flag[j] =0V turn = j

: critical section

: flagli] < 0

T W N

8

Szymanski

The pseudocode for the flag algorithm is shown in Algorithm 9. The flag-
algorithm is presented in [10, Figure 2|, but note that we have repaired an
obvious typo: [10, Figure 2] erroneously has a A instead of a V in line 10. All
flag registers are initialized at 0.

Algorithm 9 Szymanski’s flag algorithm

—_ =
= O © XN QU W N

: flagli] + 1
: await V. flag[j] < 3
: flagli] + 3
. if 3j. flag[j] = 1 then
flagli] <2
await 3j. flag[j] =4
: flagli] + 4
: await Vj < 4. flag[j] < 2
: critical section
: await V5 > 4. flag[j] < 2V flag[j] > 3
: flagli] < 0

We translate this to a 3 bit implementation using Algorithm 8.

flag | intent | door-in | door_out
0 0 0 0
1 1 0 0
2 0 1 0
3 1 1 0
4 1 1 1

Table 1: Translating the integer register flag to three Boolean registers intent,
door_in and door_out.

Algorithm 10 Szymanski’s flag algorithm implemented with bits
intent[i] < 1
await Vj. intent[j] = 0V door_in[j] =0
door_in[i] + 1
if 3j. intent[j] = 1 A door_in[j] = 0 then
intent[i] < 0
await 3j. door_out[j] =1
if intent[i] = 0 then
intent[i] < 1
door_outi] + 1
await Vj < i. door_in[j] =0
: critical section
: await Vj > 4. door_in[j] = 0V door_out[j] =1
. intent[i] - 0
: door_in[i] + 0
: door_out[i] + 0

— e = e e
N S)

[y
ot

The 3 bit linear wait algorithm is adapted from [11, Figure 1]. The pseu-
docode is presented in Algorithm 11. The three bits, a, w and s for each thread,
are all intialized at 0.

Algorithm 11 Szymanski’s 3 bit linear wait algorithm

1:a; 1

2: for j <— 0 to N—1 do await s; =0

3 w; — 1

4: a; <0

5: while s; =0 do

6: j<0

7: while j < NAaj;=0do j«+j+1

8: if j = N then

9: Si(*l

10: 7+<0

11: while j < NAaj=0do j+ j+1
12: if j < N then s; <0

13: else

14: w; < 0

15: for j <~ 0 to N — 1 do await w; =0
16: if j < N then

17: 7+0

18: while j < NA(w;j =1Vs; =0)do j <+ j+1
19: if j £iANj < N then

20: s; 1

21: w; < 0

22: for j <~ 0 to i —1 do await s; =0
23: critical section
24: s; <0

References

(1]

2]

[10]

K. Alagarsamy. Some myths about famous mutual exclusion algorithms.
ACM SIGACT News, 34(3):94-103, 2003.

Alex A Aravind. Yet another simple solution for the concurrent program-
ming control problem. IEEE Transactions on Parallel and Distributed Sys-
tems, 22(6):1056-1063, 2010.

Hagit Attiya and Jennifer L. Welch. Distributed computing - fundamentals,
simulations, and advanced topics (2. ed.). Wiley series on parallel and
distributed computing. Wiley, 2004.

Edsger W Dijkstra. Over de sequentialiteit van procesbeschrijvingen (ewd-
35). ew dijkstra archive. Center for American History, University of Texas
at Austin, 1962.

Edsger W. Dijkstra. Solution of a problem in concurrent programming
control. Communications of the ACM, 8(9):569, 1965.

Donald E Knuth. Additional comments on a problem in concurrent pro-
gramming control. Communications of the ACM, 9(5):321-322, 1966.

Leslie Lamport. The mutual exclusion problem: Part II—statement and
solutions. J. ACM, 33(2):327-348, apr 1986. doi:10.1145/5383.5385.

Gary L. Peterson. Myths about the mutual exclusion problem. Inf. Process.
Lett., 12(3):115-116, 1981. doi:10.1016/0020-0190(81)90106-X.

Cheng Shao, Jennifer L. Welch, Evelyn Pierce, and Hyunyoung Lee. Mul-
tiwriter consistency conditions for shared memory registers. SIAM Jour-
nal on Computing, 40(1):28-62, 2011. arXiv:https://doi.org/10.1137/
07071158X, doi:10.1137/07071158X.

Boleslaw K. Szymanski. A simple solution to lamport’s concurrent pro-
gramming problem with linear wait. In Jacques Lenfant, editor, Proceed-
ings of the 2nd international conference on Supercomputing, ICS 1988,
Saint Malo, France, July 4-8, 1988, pages 621-626. ACM, 1988. doi:
10.1145/55364 .55425.

Boleslaw K. Szymanski. Mutual exclusion revisited. In Joshua Maor and
Abraham Peled, editors, Next Decade in Information Technology: Pro-
ceedings of the 5th Jerusalem Conference on Information Technology 1990,
Jerusalem, October 22-25, 1990, pages 110-117. IEEE Computer Society,
1990. doi:10.1109/JCIT.1990.128275.

