PBES Instantiation and Solving

Wieger Wesselink, Tim Willemse

April 13, 2024

This document describes instantiation and solving algorithms for PBESs that are used in the tools pbesinst and pbessolve.

1 Finite algorithm

In this section we describe an implementation of the finite instantiation algorithm PbesInstFinite that eliminates data parameters with finite sorts. It is implemented in the tool pbesinst. Let \(E = (\sigma_1 X_1(d_1 : D_1, e_1 : E_1) = \varphi_1) \cdots (\sigma_n X_n(d_n : D_n, e_n : E_n) = \varphi_n) \) be a PBES. We assume that all data sorts \(D_i \) are finite and all data sorts \(E_i \) are infinite. Let \(r \) be a data rewriter, and let \(\rho \) be an injective function that creates a unique predicate variable from a predicate variable name and a data value according to \(\rho(X_i(d, e), d_0) \rightarrow Y(e : E) \), where \(D \) is finite and \(E \) is infinite and \(d_0 \in D \). Note that \(D \) and \(D_i \) may be multi-dimensional sorts.

\[
\text{PbesInstFinite}(E, r, \rho)
\]

\[
\text{for } i := 1 \cdots n \text{ do }
\]

\[
E_i := \{ \sigma_i \rho(X_i, d) = R(\varphi_k[d_k := d]) \mid d \in D_i \}
\]

\[
\text{return } E_1 \cdots E_n,
\]

with \(R \) a rewriter on pbes expressions that is defined as follows:

\[
R(b) = b
\]

\[
R(\neg \varphi) = \neg R(\varphi)
\]

\[
R(\varphi \oplus \psi) = R(\varphi) \oplus R(\psi)
\]

\[
R(X_i(d, e)) = \begin{cases}
\rho(X_i, r(d))(r(e)) & \text{if } \text{FV}(d) = \emptyset \\
\bigvee_{d_i \in D_i} r(d = d_i) \land \rho(X_i, d_i)(r(e)) & \text{if } \text{FV}(d) \neq \emptyset
\end{cases}
\]

\[
R(\forall d.D.\varphi) = \forall d.D.R(\varphi)
\]

\[
R(\exists d.D.\varphi) = \exists d.D.R(\varphi)
\]

where \(\oplus \in \{ \lor, \land, \Rightarrow \} \), \(b \) a data expression and \(\varphi \) and \(\psi \) pbes expressions and \(\text{FV}(d) \) is the set of free variables appearing in \(d \).
2 Lazy algorithm

In this section we describe an implementation of the lazy instantiation algorithm PbesInstLazy that uses instantiation to compute a BES. It is implemented in the tool pbesinst. It takes two extra parameters, an injective function \(\rho \) that renames proposition variables to predicate variables, and a rewriter \(R \) that eliminates quantifiers from predicate formulae. Let \(\mathcal{E} = (\sigma_1 X_1(d_1 : D_1) = \varphi_1) \ldots (\sigma_n X_n(d_n : D_n) = \varphi_n) \) be a PBES, and \(X_{\text{init}}(e_{\text{init}}) \) an initial state.

\[
PbesInstLazy(\mathcal{E}, X_{\text{init}}(e_{\text{init}}), R, \rho) \\
\text{for } i := 1 \ldots n \text{ do } E_i := e \\
todo := \{ R(X_{\text{init}}(e_{\text{init}})) \}\}
\text{done} := \emptyset \\
\text{while } todo \neq \emptyset \text{ do} \\
\text{choose } X_k(e) \in todo \\
todo := todo \setminus \{ X_k(e) \} \\
\text{done} := \text{done} \cup \{ X_k(e) \} \\
X^e := \rho(X_k(e)) \\
\psi^e := R(\varphi_k[d_k := e]) \\
E_k := E_k(\sigma_k X^e = \rho(\psi^e)) \\
todo := todo \cup \{ Y(f) \in \text{occ}(\psi^e) \mid Y(f) \notin \text{done} \} \\
\text{return } E_1 \ldots E_n,
\]

where \(\rho \) is extended from predicate variables to quantifier free predicate formulae using

\[
\begin{align*}
\rho(b) &= b \\
\rho(\varphi \oplus \psi) &= \rho(\varphi) \oplus \rho(\psi)
\end{align*}
\]
3 Generic lazy algorithms

In this section two generic variants of lazy PBES instantiation are described that report all discovered BES equations using a callback function `ReportEquation`. These versions are later extended to compute structure graphs.

The first version `PbesInstLazy1` maintains a collection `done`, that contains all BES variables for which an equation has been computed.

```plaintext
PbesInstLazy1(\mathcal{E}, X_{init}(e_{init}), R)
\begin{align*}
\text{init} & := R(X_{init}(e_{init})) \\
\text{todo} & := \{\text{init}\} \\
\text{done} & := \emptyset \\
\textbf{while} \ \text{todo} \neq \emptyset \ \textbf{do} & \\
& \quad \textbf{choose} \ X_k(e) \in \text{todo} \\
& \quad \text{todo} := \text{todo} \setminus \{X_k(e)\} \\
& \quad \text{done} := \text{done} \cup \{X_k(e)\} \\
& \quad \psi^e := R(\phi_k[d_k := e]) \\
& \quad \text{ReportEquation}(X_k(e), \psi^e) \\
& \quad \text{todo} := \text{todo} \cup (\text{occ}(\psi^e) \setminus \text{done})
\end{align*}
```

The second version `PbesInstLazy2` maintains a set `discovered` instead of `done`. This set contains BES variables that have been discovered, but for which the corresponding equation may not have been computed yet. The sets are related via `\text{done} = \text{discovered} \setminus \text{todo}`.

```plaintext
PbesInstLazy2(\mathcal{E}, X_{init}(e_{init}), R)
\begin{align*}
\text{init} & := R(X_{init}(e_{init})) \\
\text{todo} & := \{\text{init}\} \\
\text{discovered} & := \{\text{init}\} \\
\textbf{while} \ \text{todo} \neq \emptyset \ \textbf{do} & \\
& \quad \textbf{choose} \ X_k(e) \in \text{todo} \\
& \quad \text{todo} := \text{todo} \setminus \{X_k(e)\} \\
& \quad \psi^e := R(\phi_k[d_k := e]) \\
& \quad \text{ReportEquation}(X_k(e), \psi^e) \\
& \quad \text{todo} := \text{todo} \cup (\text{occ}(\psi^e) \setminus \text{discovered}) \\
& \quad \text{discovered} := \text{discovered} \cup \text{occ}(\psi^e)
\end{align*}
```

It turned out that the second version has slightly better performance for some larger use cases, so the second version is implemented in the tool `pbessolve`.

To support breadth first and depth first search, the implementation stores the set `todo` as a double ended queue. New elements are always appended to `todo`. In the case of breadth first search always the first element is chosen, and in the case of depth first search the last element.

4 Structure graphs

A structure graph is a tuple \((V, E, d, r)\) with \(V\) a set of nodes containing BES variables, \(E\) a set of edges, \(r : V \to \mathbb{N}\) a partial function that assigns a rank to each node, and \(d : V \to \{\top, \bot, \text{▲}, \text{▼}\}\) a partial function that assigns a decoration to each node. A structure graph is formally defined using the following SOS rules:

\[
\begin{align*}
\frac{X \in \text{bnd}(\mathcal{E})}{r(X) = \text{rank}_{\mathcal{E}}(X)} \\
\text{d}(\text{true}) = \top & \quad \text{d}(\text{false}) = \bot
\end{align*}
\]
\[\overline{d(f \land f')} = \triangledown \quad d(f \lor f') = \Delta \]
\[f \triangledown f \rightarrow g \quad f \Delta f \rightarrow g \]
\[(f \land f') \rightarrow g \quad (f' \land f) \rightarrow g \]
\[f \lor f' \rightarrow g \quad (f' \lor f) \rightarrow g \]
\[\neg f \triangledown f \rightarrow f' \quad \neg f' \Delta f \rightarrow f' \]
\[f \lor f' \rightarrow f' \quad \neg f' \lor f' \rightarrow f' \]
\[X \land f \rightarrow X \quad f \land X \rightarrow X \]
\[X \lor f \rightarrow X \quad f \lor X \rightarrow X \]
\[\sigma X = f \land f' \in \mathcal{E} \quad \sigma X = f \lor f' \in \mathcal{E} \]
\[d(X) = \Delta \quad d(X) = \triangledown \]
\[\sigma X = Y \in \mathcal{E} \quad \sigma X = \top \in \mathcal{E} \quad \sigma X = \bot \in \mathcal{E} \]
\[X \rightarrow Y \quad X \rightarrow \top \quad X \rightarrow \bot \]
\[\sigma X = f \land f' \in \mathcal{E} \quad f \land f' \rightarrow g \]
\[X \rightarrow g \]
\[\sigma X = f \lor f' \in \mathcal{E} \quad f \lor f' \rightarrow g \]
\[X \rightarrow g \]

Note that in this definition separate nodes are created for the left hand side \(X \) and the right hand side \(f \) of each equation \(\sigma X = f \). This is undesirable, hence in implementations usually the nodes \(X \) and \(f \) are merged into one node labeled with \(X \).

4.1 Attractor sets

Let \(A \subseteq V \) be a subset of vertices of a structure graph \(G = (V, E, d, r) \). We define the following algorithms for computing an attractor set of \(A \). The value \(\alpha = 0 \) corresponds with disjunction and \(\alpha = 1 \) with conjunction.

\[
\text{AttrDefault}(A, \alpha)
\]
\[\text{todo} := \bigcup_{u \in A} (\text{pred}(u) \setminus A)\]
\[\text{while } \text{todo} \neq \emptyset \text{ do}\]
\[\text{choose } u \in \text{todo}\]
\[\text{todo} := \text{todo} \setminus \{u\}\]
\[\text{if } d(u) = \alpha \lor \text{succ}(u) \subseteq A \text{ then}\]
\[\text{if } d(u) = \alpha \text{ then } \tau[u] := v \text{ with } v \in A \cap \text{succ}(u)\]
\[A := A \cup \{u\}\]
\[\text{todo} := \text{todo} \cup (\text{pred}(u) \setminus A)\]
\[\text{return } A\]

where
\[\text{pred}(v) = \{u \in V \mid (u, v) \in E\}\]
\[\text{succ}(u) = \{v \in V \mid (u, v) \in E\}\]

As a side effect a mapping \(\tau \) is produced that corresponds to a winning strategy. Assignments to \(\tau \) are colored.
A second version AttrDefaultWithTau is available, that in addition sets the strategy in the mapping \(\tau \).

\[
\text{AttrDefaultWithTau}(A, \alpha, \tau) \\
\text{todo} := \bigcup_{u \in A} (\text{pred}(u) \setminus A) \\
\text{while todo }\neq \emptyset \text{ do} \\
\quad \text{choose } u \in \text{todo} \\
\quad \text{todo} := \text{todo} \setminus \{u\} \\
\quad \text{if } d(u) = \alpha \vee \text{succ}(u) \subseteq A \text{ then} \\
\quad \quad \text{if } d(u) = \alpha \text{ then } \tau[u], \tau_\alpha[u] := v, v \text{ with } v \in A \cap \text{succ}(u) \\
\quad \quad A := A \cup \{u\} \\
\quad \quad \text{todo} := \text{todo} \cup (\text{pred}(u) \setminus A) \\
\\text{return } A, \tau_\alpha
\]

Finally AttrDefaultNoStrategy does not set any strategy:

\[
\text{AttrDefaultNoStrategy}(A, \alpha) \\
\text{todo} := \bigcup_{u \in A} (\text{pred}(u) \setminus A) \\
\text{while todo }\neq \emptyset \text{ do} \\
\quad \text{choose } u \in \text{todo} \\
\quad \text{todo} := \text{todo} \setminus \{u\} \\
\quad \text{if } \text{succ}(u) \subseteq A \text{ then} \\
\quad \quad A := A \cup \{u\} \\
\quad \quad \text{todo} := \text{todo} \cup (\text{pred}(u) \setminus A) \\
\\text{return } A
\]

A second version of an attractor set computation is AttrSimple. It is used for pruning the todo list.

\[
\text{AttrSimple}(A) \\
\text{todo} := \bigcup_{u \in A} (\text{pred}(u) \setminus A) \\
\text{while todo }\neq \emptyset \text{ do} \\
\quad \text{choose } u \in \text{todo} \\
\quad \text{todo} := \text{todo} \setminus \{u\} \\
\quad \text{if } \text{succ}(u) \subseteq A \text{ then} \\
\quad \quad A := A \cup \{u\} \\
\quad \quad \text{if } d(u) = \alpha \text{ then } \tau[u] := v \text{ with } v \in A \cap \text{succ}(u) \\
\quad \quad \text{todo} := \text{todo} \cup (\text{pred}(u) \setminus A) \\
\\text{return } A
\]

4.2 Recursive procedure for solving structure graphs

Let \(G = (V, E, d, r) \) be a structure graph. The following algorithm is used to compute a partitioning of \(V \) into \((W_0, W_1)\) of vertices \(W_0 \) that represent equations evaluating to true and vertices \(W_1 \) that represent equations evaluating to false. A precondition of this algorithm is that it contains no nodes with decoration.
or \bot. This algorithm is based on Zielonka’s recursive algorithm.

\begin{align*}
\text{SolveRecursive}(V) \\
\text{if } V = \emptyset \text{ then return } (\emptyset, \emptyset) \\
m := \min\{r(v) \mid v \in V\} \\
\alpha := m \mod 2 \\
U := \{v \in V \mid r(v) = m\} \\
A := \text{AttrDefault}(U, \alpha) \\
W_0', W_1' := \text{SolveRecursive}(V \setminus A) \\
\text{if } W_1'_{1-\alpha} = \emptyset \text{ then } \\
W_{\alpha}, W_{1-\alpha} := A \cup W_{\alpha}', \emptyset \\
\text{else } \\
B := \text{AttrDefault}(W_1'_{1-\alpha}, 1-\alpha) \\
W_0, W_1 := \text{SolveRecursive}(V \setminus B) \\
W_{1-\alpha} := W_{1-\alpha} \cup B \\
\text{return } W_0, W_1
\end{align*}

where

\[\text{succ}(u, U) = \begin{cases}
\text{succ}(u) \cap U & \text{if } \text{succ}(u) \cap U \neq \emptyset \\
\text{succ}(u) & \text{otherwise}
\end{cases}\]

Tom van Dijk has introduced an optimization that may reduce the number of recursive calls. Note that this optimized version does not compute a complete strategy, so it cannot be used for counter example generation(!)

\begin{align*}
\text{SolveRecursive}(V) \\
\text{precondition : } V \subseteq \text{dom}(r) \cup \text{dom}(d) \\
\text{if } V = \emptyset \text{ then return } (\emptyset, \emptyset) \\
m := \min\{r(v) \mid v \in V\} \\
\alpha := m \mod 2 \\
U := \{v \in V \mid r(v) = m\} \\
\textbf{for } u \in U \text{ if } d(u) = \alpha \land \text{succ}(u) \neq \emptyset \text{ then } \tau[u] := v \text{ with } v \in \text{succ}(u) \\
A := \text{AttrDefault}(U, \alpha) \\
W_0', W_1' := \text{SolveRecursive}(V \setminus A) \\
B := \text{AttrDefault}(W_1'_{1-\alpha}, 1-\alpha) \\
\text{if } W_1'_{1-\alpha} = B \text{ then } \\
W_{\alpha}, W_{1-\alpha} := A \cup W_{\alpha}', B \\
\text{else } \\
W_0, W_1 := \text{SolveRecursive}(V \setminus B) \\
W_{1-\alpha} := W_{1-\alpha} \cup B \\
\text{return } W_0, W_1
\end{align*}

The algorithm can be extended to sets V containing nodes with decoration \top or \bot as follows:

\begin{align*}
\text{SolveRecursiveExtended}(V) \\
V_1 := \text{AttrDefault}(\{v \in V \mid d(v) = \bot\}, 1) \\
V_0 := \text{AttrDefault}(\{v \in V \mid d(v) = \top\}, 0) \\
(W_0, W_1) := \text{SolveRecursive}(V \setminus (V_0 \cup V_1)) \\
\text{return } (W_0 \cup V_1, W_0 \cup V_1)
\end{align*}

Another possible optimization of the \text{SolveRecursive} algorithm is to insert the following shortcuts. This
doesn’t seem to have much effect in practice, so currently it isn’t enabled in the code.

\[
\text{SolveRecursive}(V)
\]
\[
\text{if } V = \emptyset \text{ then return } (\emptyset, \emptyset)
\]
\[
m := \min(\{r(v) \mid v \in V\})
\]
\[
\alpha := m \mod 2
\]
\[
U := \{v \in V \mid r(v) = m\}
\]
\[
\text{for } u \in U \text{ if } d(u) = \alpha \land \text{succ}(u) \neq \emptyset \text{ then } \tau[u] := v \text{ with } v \in \text{succ}(u)
\]
\[
\text{if } h = m \land \text{even}(m) \text{ then return } (\emptyset, V)
\]
\[
\text{if } h = m \land \text{odd}(m) \text{ then return } (V, \emptyset)
\]
\[
A := \text{AttrDefault}(U, \alpha)
\]
\[
W_0', W_1' := \text{SolveRecursive}(V \setminus A)
\]
\[
\text{if } W_1' = \emptyset \text{ then}
\]
\[
W_\alpha, W_{1-\alpha} := A \cup W'_\alpha, \emptyset
\]
\[
\text{else}
\]
\[
B := \text{AttrDefault}(W_1', 1 - \alpha)
\]
\[
W_0, W_1 := \text{SolveRecursive}(V \setminus B)
\]
\[
W_{1-\alpha} := W_{1-\alpha} \cup B
\]
\[
\text{return } W_0, W_1
\]
5 Structure graph based PBES instantiation

In the tool pbessolve an extension called PbesInstStructureGraph of the PbesInstLazy2 algorithm is implemented that builds a structure graph from the reported equations. On top of it several optimizations to this algorithm are defined. For readability, we only present the full algorithms here, and highlight the changes with respect to previous versions. A graph G is represented as a tuple (V, E) with V the set of vertices and E the set of edges.

\[
PbesInstStructureGraph(\mathcal{E}, X_{\text{init}}(e_{\text{init}}), R)
\]

\[
\text{init} := R(X_{\text{init}}(e_{\text{init}}))
\]

\[
todo := \{\text{init}\}
\]

\[
discovered := \{\text{init}\}
\]

\[
(V, E) := (\emptyset, \emptyset)
\]

\[
\text{while } todo \neq \emptyset \text{ do}
\]

\[
\text{choose } X_k(e) \in todo
\]

\[
todo := todo \setminus \{X_k(e)\}
\]

\[
\psi' := R(\varphi_k[d_k := e])
\]

\[
(V, E) := (V, E) \cup SG^0(X_k(e), \psi')
\]

\[
todo := todo \cup (\text{occ}(\psi') \setminus \text{discovered})
\]

\[
discovered := discovered \cup \text{occ}(\psi')
\]

\[
\text{return } (V, E)
\]

where SG^0 and SG^1 are defined as

<table>
<thead>
<tr>
<th>ψ</th>
<th>$SG^n(\varphi, \psi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$true$</td>
<td>$((\varphi), \emptyset)$</td>
</tr>
<tr>
<td>$false$</td>
<td>$((\varphi), \emptyset)$</td>
</tr>
<tr>
<td>Y</td>
<td>$((\varphi, \psi), ((\varphi, \psi)))$</td>
</tr>
<tr>
<td>$\psi_1 \land \cdots \land \psi_n$</td>
<td>$((\varphi, \psi_1, \cdots, \psi_n), ((\varphi, \psi_1), \cdots, (\varphi, \psi_n))) \cup \bigcup_{i=1}^n SG^1(\psi_i)$</td>
</tr>
<tr>
<td>$\psi_1 \lor \cdots \lor \psi_n$</td>
<td>$((\varphi, \psi_1, \cdots, \psi_n), ((\varphi, \psi_1), \cdots, (\varphi, \psi_n))) \cup \bigcup_{i=1}^n SG^1(\psi_i)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ψ</th>
<th>$SG^1(\varphi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$true$</td>
<td>$((\psi), \emptyset)$</td>
</tr>
<tr>
<td>$false$</td>
<td>$((\psi), \emptyset)$</td>
</tr>
<tr>
<td>Y</td>
<td>$((\psi), \emptyset)$</td>
</tr>
<tr>
<td>$\psi_1 \land \cdots \land \psi_n$</td>
<td>$((\psi, \psi_1, \cdots, \psi_n), ((\psi, \psi_1), \cdots, (\psi, \psi_n))) \cup \bigcup_{i=1}^n SG^1(\psi_i)$</td>
</tr>
<tr>
<td>$\psi_1 \lor \cdots \lor \psi_n$</td>
<td>$((\psi, \psi_1, \cdots, \psi_n), ((\psi, \psi_1), \cdots, (\psi, \psi_n))) \cup \bigcup_{i=1}^n SG^1(\psi_i)$</td>
</tr>
</tbody>
</table>

where we assume that in $\psi_1 \land \cdots \land \psi_n$ none of the ψ_i is a conjunction, and in $\psi_1 \lor \cdots \lor \psi_n$ none of the ψ_i is a disjunction. Note that both $SG^0(\varphi, \psi)$ and $SG^1(\varphi, \psi)$ are defined as a pair (V, E) of nodes and edges.

5.1 Optimisation 1

The lemma below indicates that one can simplify the BES equation that is being created without affecting the solution to the BES.

Lemma 1 The solution to all variables in a BES $\mathcal{E}(\sigma X = f)\mathcal{E}'$ is equivalent to the solution to those variables in the BES $\mathcal{E}(\sigma X = f[X := b_\sigma])\mathcal{E}'$, where $b_\sigma = true$ if $\sigma = \nu$ and $b_\sigma = false$ if $\sigma = \mu$.

Using this lemma, rather than creating a structure graph underlying the equation \(\sigma X_e = \psi^e \), we can create a structure graph for \(\sigma X_e = \psi^e[X^e := b_\sigma] \). This can be done by adding the following assignment below the assignment \(\psi^e := R(\varphi_k[d_k := e]) \):

\[
\psi^e := R(\psi^e[X^e := b_\sigma])
\]

This leads to the following adaptations in the code:

```plaintext
PbesInstStructureGraph_1(\mathcal{E}, X_{init}(\epsilon_{init}), R)
init := R(X_{init}(\epsilon_{init}))
todo := \{init\}
discovered := \{init\}
(V, E) := (\emptyset, \emptyset)
while todo \neq \emptyset do
  choose X_k(e) \in todo
  todo := todo \setminus \{X_k(e)\}
  \psi^e := R(\varphi_k[d_k := e])
  \psi^e := if \sigma_k = \mu then R(\psi^e[X^e := false]) else R(\psi^e[X^e := true])
  (V, E) := (V, E) \cup SG^p(X^e, \psi^e)
todo := todo \cup (occ(\psi^e) \setminus discovered)
discovered := discovered \cup occ(\psi^e)
return (V, E),
```

5.2 Optimisation 2

Our second optimisation exploits the fact that some of the BES equations that are generated while exploring the PBES are already solved (possibly after using optimisation 1). We first introduce some additional notation. Let \((V, E)\) be a (partial) structure graph underlying the PBES \(\mathcal{E}\). By \(S_0\) we denote the set of vertices that represent equations with solution \(true\), whereas \(S_1\) denotes the set of vertices representing equations with solution \(false\). Along with these sets, we introduce strategies \(\tau_0\) and \(\tau_1\) that explain why a vertex belongs to \(S_0\) or \(S_1\), respectively. Let \(\pi\) be a partial function that maps vertices to the propositional variables they represent (and only those vertices that represent propositional variables). For a set of vertices \(S \subseteq V\), we define the substitution \(\rho_i\) as follows for all \(s \in S \cap \text{dom}(\pi)\): \(\rho_i(\pi(s)) = true\) if \(i = 0\) and \(\rho_i(\pi(s)) = false\) if \(i = 1\). The union of two substitutions is again a substitution, provided that the domain of variables these substitutions range over are disjoint.

The lemma below indicates how one can utilise such information to simplify the BES equation that is being created, again without affecting the solution to the BES.

Lemma 2 The solution to all variables in a BES \(\mathcal{F} = \mathcal{E}(\sigma X = f)\mathcal{E}'\) is equivalent to the solution to those variables in the BES \(\mathcal{F}' = \mathcal{E}(\sigma X = f(\rho_0(S_0) \cup \rho_1(S_1)))\mathcal{E}'\), where for all \(S_0 \cup S_1 \subseteq \{v \in V \mid \forall \theta, \theta' : [\mathcal{F}]\theta(\pi(v)) = [\mathcal{F}]\theta'(\pi(v))\}, \) where \([\mathcal{F}]\theta\) denotes the solution to \(\mathcal{F}\) under environment \(\theta\).

Using this lemma, rather than creating a structure graph underlying the equation \(\sigma X_e = \psi^e\), we can create a structure graph for \(\sigma X_e = \psi^e(\rho_0(S_0) \cup \rho_1(S_1))\), provided that \(S_0\) and \(S_1\) contain vertices that represent solved equations. This leads to the following adaptations in the code: we maintain two sets \(S_0\) and \(S_1\) for which we can (cheaply) establish that these correspond to solved equations, and we add an assignment below the assignment of optimisation 1.
Note on computing winning strategies. Rewriting the propositional formula ψ^e using S_0 and S_1 may result in a loss of information, preventing us from constructing a winning strategy for both players. We can solve that by mimicking the attractor set computation in our rewriting; that is, we implement $R(\varphi_k[d_k := e])$ using a rewriter R^+ which takes a formula (and implicitly takes sets S_0 and S_1 into account. This leads to the following bottom-up procedure in which $R^+(f)$ yields a tuple (b, f', g_0, g_1), where b is either a Boolean value, or the value \bot, and f' is a propositional formula that is equivalent to f under the assumption that S_0 and S_1 are solved, but the formula f is not fully solved using that information. Propositional formula g_0 (resp. g_1) is a conjunctive (resp. disjunctive) formulae, representing f in case b is true (resp. false); in case b is true, the conjunctive formula g_0 can be used to construct a witness, as it contains exactly all dependencies on S_1 that are needed to make formula f hold. Dually for formula g_1.

- Case $f \equiv true$ then $R^+(f) = (f, f, true, false)$;
- Case $f \equiv false$ then $R^+(f) = (f, f, false, true)$;
- Case $f \equiv X$ then $R^+(f) = (true, X, X, false)$ when $X \in S_0$, $(false, X, true, X)$ when $X \in S_1$ and $(\bot, X, true, false)$ otherwise;
- Case $f \equiv f_1 \land f_2$, assuming that $R^+(f_i) = (b_i, f_i', g_0^i, g_1^i)$.
 If $b_1 = true$ and $b_2 = true$, then $R^+(f) = (true, f_1' \land f_2, g_0^1 \land g_0^2, false)$.
 If $b_1 = false$ and $b_2 = false$, then $R^+(f) = (false, f_1', true, g_1^1)$.
 If $b_1 = false$ and $b_2 = true$ then $R^+(f) = (false, f_2', true, g_1^2)$.
 If $b_1 = false$ and $b_2 = false$ then $R^+(f) = (false, f_1', true, g_1^1)$ when $|g_1^1| < |g_1^2|$ and $(false, f_2', true, g_1^2)$ otherwise.
 If $b_1 = \bot$ and $b_2 = \bot$ then $R^+(f) = (\bot, f_1' \land f_2', true, false)$;
- Case $f \equiv f_1 \lor f_2$, assuming that $R^+(f_i) = (b_i, f_i', g_0^i, g_1^i)$.
 If $b_1 = false$ and $b_2 = false$, then $R^+(f) = (false, f_1', false, g_0^1 \lor g_0^2)$.
 If $b_1 = true$ and $b_2 = true$, then $R^+(f) = (true, f_1', true, g_1^1 \lor g_1^2)$.
 If $b_1 = false$ and $b_2 = true$ then $R^+(f) = (false, f_1', true, g_1^1)$.
If \(b_1 \neq true \) and \(b_2 = true \) then \(R^+(f) = (true, f'_2, g_0^2, false) \).
If \(b_1 = true \) and \(b_2 = true \) then \(R^+(f) = (true, f'_1, g_0^1, false) \) when \(|g_0^1| < |g_0^2| \) and \((true, f'_2, g_0^2, false) \) otherwise.
If \(b_1 = \bot \) and \(b_2 = \bot \) then \(R^+(f) = (\bot, f'_1 \lor f'_2, true, false) \).

The assignment \(\psi^e := R(\phi^e(\rho_0(S_0) \cup \rho_1(S_1))) \) can be replaced by an assignment \((b, \psi^e, g_0, g_1) := R^+(\psi^e) \),
and the extension to \(S_0 \) and \(S_1 \) can then be replaced by the following code:

```plaintext
def PbesinstStructureGraph(E, X, init, R):
  init := R(X, init)
  todo := \{init\}
  discovered := \{init\}
  (V, E) := (\emptyset, \emptyset)
  S0 := \emptyset
  S1 := \emptyset
  while todo \neq \emptyset do
    choose \( X_k(e) \in todo \)
    todo := todo \setminus \{X_k(e)\}
    \psi := R(\varphi_k[d := c])
    \psi := if \( \sigma_k = \mu \) then \( R(\psi[X^e := false]) \) else \( R(\psi[X^e := true]) \)
    (b, \psi, g_0, g_1) := R^+(\psi)
    if b = true then
      S0 := S0 \cup \{X^e\}
      \psi := g_0
    if b = false then
      S1 := S1 \cup \{X^e\}
      \psi := g_1
    (V, E) := (V, E) \cup SG^0(X^e, \psi)
    todo := todo \cup (occ(\psi) \setminus discovered)
    discovered := discovered \cup occ(\psi)
  V := ExtractMinimalStructureGraph(V, init, S0, S1, \tau_0, \tau_1)
  return (V, E)
```

As a post-processing of the graph constructed by instantiation, the following procedure is used. It returns a structure graph \((V, E)\) in which information regarding local winning strategies has been exploited to minimise the structure graph, preserving relevant counterexample information. Note: the strategies \(\tau_0 \) and \(\tau_1 \) are assumed to be consistent with the sets \(S_0 \) and \(S_1 \) (i.e., be a closed, winning strategy for the vertices in those sets).
ExtractMinimalStructureGraph\((V, \text{init}, S_0, S_1, \tau_0, \tau_1)\)

todo := \{\text{init}\}
done := \emptyset

\textbf{while} todo \neq \emptyset \textbf{do}

\hspace{1em} \textbf{choose} \ u \in \text{todo}

\hspace{2em} todo := todo \setminus \{u\}

\hspace{2em} done := done \cup \{u\}

\hspace{1em} \textbf{if} \ (u \in S_0 \land \text{d}(u) = \blacksquare)

\hspace{2em} \hspace{1em} v := \tau_0(u)

\hspace{2em} \hspace{1em} \textbf{if} \ v \notin done \textbf{then}

\hspace{3em} todo := todo \cup \{v\}

\hspace{1em} \textbf{else if} \ (u \in S_1 \land \text{d}(u) = \blacktriangle)

\hspace{2em} \hspace{1em} v := \tau_1(u)

\hspace{2em} \hspace{1em} \textbf{if} \ v \notin done \textbf{then}

\hspace{3em} todo := todo \cup \{v\}

\hspace{1em} \textbf{else}

\hspace{2em} \textbf{for} \ v \in \text{succ}(u) \textbf{ do}

\hspace{3em} \textbf{if} \ v \notin done \textbf{ then}

\hspace{4em} todo := todo \cup \{v\}

\hspace{1em} return \ done

5.3 Pruning the todo set

During the execution of the algorithm, the set todo may contain nodes that can be proven to be irrelevant, in the sense that the solution of the PBES can already be computed without exploring the irrelevant nodes. To this end we partition the set todo into the sets todo and irrelevant using the function PruneTodo. This function is applicable for optimisations 3 and higher. Note that elements from irrelevant may be moved back to todo when new elements are added to the todo set. The function PruneTodo should be called periodically, not every iteration.
 initiates graph pruning process

\[\text{init} := R(X_{\text{init}}(e_{\text{init}})) \]

\[\text{todo} := \{ \text{init} \} \]

\[\text{irrelevant} := \emptyset \]

\[\text{discovered} := \{ \text{init} \} \]

\[(V, E) := (\emptyset, \emptyset) \]

\[S_0 := \emptyset \]

\[S_1 := \emptyset \]

\[\text{while } (\text{todo} \setminus \text{irrelevant}) \neq \emptyset \land X_{\text{init}}(e_{\text{init}}) \notin S_0 \cup S_1 \text{ do} \]

\[\text{choose } X_k(e) \in \text{todo} \]

\[\text{todo} := \text{todo} \setminus \{ X_k(e) \} \]

\[\psi^e := R(\varphi_k[d_k := e]) \]

\[\psi^e := \text{if } \sigma_k = \mu \text{ then } R(\psi^e[X^e := false]) \text{ else } R(\psi^e[X^e := true]) \]

\[(b, \psi^e) := R^+(\psi^e) \]

\[\text{if } b = \text{true } \text{then } S_0 := S_0 \cup \{ X^e \} \]

\[\text{if } b = \text{false } \text{then } S_1 := S_1 \cup \{ X^e \} \]

\[(V, E) := (V, E) \cup SG^0(X^e, \psi^e) \]

\[\text{todo} := \text{todo} \cup (\text{occ}(\psi^e) \setminus \{ \text{discovered} \setminus \text{irrelevant} \}) \]

\[\text{discovered} := \text{discovered} \cup \text{occ}(\psi^e) \]

\[\text{irrelevant} := \text{irrelevant} \setminus \text{occ}(\psi^e) \]

\[\text{irrelevant} := \text{PruneTodo}(\text{init}, \text{todo}, \text{irrelevant}) \]

\[V := \text{ExtractMinimalStructureGraph}(V, \text{init}, S_0, S_1, \tau_0, \tau_1) \]

\[\text{return } (V, E), \]

where \text{PruneTodo} is defined as

\[\text{PruneTodo}(\text{init}, \text{todo}, \text{irrelevant}) \]

\[\text{todo} := \{ \text{init} \} \]

\[\text{done} := \{ \text{init} \} \]

\[\text{new todo} := \emptyset \]

\[\text{while } \text{todo} \neq \emptyset \text{ do} \]

\[\text{choose } u \in \text{todo} \]

\[\text{todo} := \text{todo} \setminus \{ u \} \]

\[\text{done} := \text{done} \cup \{ u \} \]

\[\text{if } d(u) = \perp \land \text{succ}(u) = \emptyset \text{ then} \]

\[\text{new todo} := \text{new todo} \cup \{ u \} \]

\[\text{else if } u \notin S_0 \cup S_1 \text{ then} \]

\[\text{todo} := \text{todo} \cup (\text{succ}(u) \setminus \text{done}) \]

\[\text{new todo} := \text{new todo} \cap (\text{todo} \cup \text{irrelevant}) \]

\[\text{new irrelevant} := (\text{todo} \cup \text{irrelevant}) \setminus \text{new todo} \]

\[\text{return } \text{new todo}, \text{new irrelevant} \]

5.4 Optimisations 3 and higher

When the computation of \(SG^0(\varphi, \psi, r) \) finishes and the subgraph represented by \(SG^0 \) is effectively solved (which is the case if it represents \text{true} or \text{false}), we can use these results to solve other variables by propagating the information in \(S_0 \) and \(S_1 \) to the structure graph constructed so far. The modification is minor, re-using the attractor set computation (and setting of a winning strategy) that is also part of Zielonka’s recursive algorithm. More specifically, we can ensure that \(S_0 \) and \(S_1 \) are closed under the appropriate
attractor set computations. Furthermore, if the initial vertex belongs to either S_0 or S_1, we can terminate the search. This leads to the following modified algorithm, that is used as a basis for all further optimisations:

\[
\text{PbesinstStructureGraphEarlyTermination}(E, X_{\text{init}}(e_{\text{init}}), R)
\]

\[
\begin{align*}
\text{init} & := R(X_{\text{init}}(e_{\text{init}})) \\
\text{todo} & := \{\text{init}\} \\
\text{discovered} & := \{\text{init}\} \\
(V, E) & := (\emptyset, \emptyset) \\
S_0, \tau_0 & := \emptyset, \emptyset \\
S_1, \tau_1 & := \emptyset, \emptyset \\
\text{while } \text{todo} \neq \emptyset \text{ \&\& } X_{\text{init}}(e_{\text{init}}) \notin S_0 \cup S_1 \text{ do} \\
& \quad \text{choose } X_k(e) \in \text{todo} \\
& \quad \text{todo} := \text{todo} \setminus \{X_k(e)\} \\
& \quad \psi^e := R(\varphi_k[d_k := e]) \\
& \quad \psi^e := \text{if } \sigma_k = \mu \text{ then } R(\psi^e[X^e := \text{false}]) \text{ else } R(\psi^e[X^e := \text{true}]) \\
& \quad (b, \psi^e) := R^+(\psi^e) \\
& \quad \text{if } b = \text{true} \text{ then } S_0 := S_0 \cup \{X^e\} \\
& \quad \text{if } b = \text{false} \text{ then } S_1 := S_1 \cup \{X^e\} \\
& \quad (V, E) := (V, E) \cup SG^0(X^e, \psi^e) \\
& \quad \text{todo} := \text{todo} \cup (\text{occ}(\psi^e) \setminus \text{discovered}) \\
& \quad \text{discovered} := \text{discovered} \cup \text{occ}(\psi^e) \\
& \quad S_0, S_1, \tau_0, \tau_1 := \text{apply_attractor}(S_0, S_1, \tau_0, \tau_1) \text{ (executed periodically)} \\
V := \text{ExtractMinimalStructureGraph}(V, \text{init}, S_0, S_1, \tau_0, \tau_1) \\
\text{return } (V, E),
\end{align*}
\]

The optimizations 3 until 7 each use a different function for \text{apply_attractor}. Attractor computations are expensive operations, so in \text{pbesolve} the function \text{apply_attractor} is called only periodically.
5.5 Optimisation 3

\[\text{PbesInstStructureGraph}_3(E, X_{init}(e_{init}), R) \]
\[\text{init} := R(X_{init}(e_{init})) \]
\[\text{todo} := \{ \text{init} \} \]
\[\text{discovered} := \{ \text{init} \} \]
\[(V, E) := (\emptyset, \emptyset) \]
\[S_0 := \emptyset \]
\[S_1 := \emptyset \]
\[\text{while } \text{todo} \neq \emptyset \land X_{init}(e_{init}) \notin S_0 \cup S_1 \text{ do} \]
\[\text{choose } X_k(e) \in \text{todo} \]
\[\text{todo} := \text{todo} \setminus \{X_k(e)\} \]
\[\psi := R(\varphi_k[d_k := e]) \]
\[\text{if } \sigma_k = \mu \text{ then } R(\psi[\chi := \text{false}]) \text{ else } R(\psi[\chi := \text{true}]) \]
\[(b, \psi) := R^+(\psi) \]
\[\text{if } b = \text{true} \text{ then } S_0 := S_0 \cup \{X_e\} \]
\[\text{if } b = \text{false} \text{ then } S_1 := S_1 \cup \{X_e\} \]
\[(V, E) := (V, E) \cup SG^0(X_e, \psi) \]
\[\text{todo} := \text{todo} \cup (\text{occ}(\psi) \setminus \text{discovered}) \]
\[\text{discovered} := \text{discovered} \cup \text{occ}(\psi) \]
\[S_0, \tau_0 := \text{AttrDefaultWithTau}(S_0, 0, \tau_0) \text{ (executed periodically)} \]
\[S_1, \tau_1 := \text{AttrDefaultWithTau}(S_1, 1, \tau_1) \text{ (executed periodically)} \]
\[V := \text{ExtractMinimalStructureGraph}(V, \text{init}, S_0, S_1, \tau_0, \tau_1) \]
\[\text{return } (V, E), \]

Further needless instantiation can be avoided by utilising the attractor strategies that are set when extending \(S_0 \) and \(S_1 \) by, once in a while, computing which vertices are still reachable from \(X_{init}(e_{init}) \), ignoring edges emanating from a vertex that are not part of the strategy for that vertex (if the strategy is set). This reachability analysis may be combined with a cheap algorithm that detects whether the game can in fact already be solved (see e.g. optimisation 4).

Note on computing winning strategies. The winning strategy can be set by extending it using the attractor strategy that is computed while computing \(\text{Attr}_0(S_0 \cup \{X_e\}) \) and \(\text{Attr}_1(S_1 \cup \{X_e\}) \).

5.6 Optimisation 4

Several simple algorithms exist that can solve partial structure graphs. An example algorithm is, for instance, the algorithm that computes whether is an odd-rank dominated conjunctive loop or an even-rank dominated disjunctive loop. The \texttt{pbes2bool} optimisation, implemented at the level of the structure graph is as follows (it typically assumes that the set \(U \) contains all fully explored vertices, \(r \) is the rank function, \(\text{dom}(r) \) yields the set of vertices with a rank associated to them; the function \(\text{parity}(p) = \uparrow \) when \(p \) is odd, and \(\downarrow \) otherwise).
FINDLOOP(U, v, w, p, visited)
if \(d(w) \in \{\top, \bot\}\) then return false
if \(w \in \text{dom}(r)\) and \(r(w) \neq p\) then return false
if \(w \in \text{keys}(visited)\) then return visited(w)
if \(w \in U\) then
 visited(w) := false
 if \(d(w) = \bot \lor d(w) = p \mod 2\) then
 for u \(\in \text{succ}(w)\) do
 if \(u = v \lor \text{FINDLOOP}(U, v, u, p, visited)\) then
 if \(u = v\) then \(\tau(w) := v\) else \(\tau(w) := u\)
 visited(w) := true
 return true
 else
 return false
return false

The routine FINDLOOP(U, v, w, r(v), visited) finds a r(v)-ranked (possibly tree-like) loop starting in v, within a set of vertices U. Note that in the above routine, parameter w represents the ‘current’ vertex, whereas v represents the vertex from which the search was initiated. Note that parameter p fulfils the role of the fixpoint sign \(\sigma\) in the original algorithm, parameter v fulfils the role of \(X_k(e)\) and \(w\) fulfils the role of \(\phi\).

The procedure FINDLOOPS can be called from within the main algorithm; it searches for loops in the structure graph currently constructed.

FINDLOOPS(discovered, todo, S_0, S_1, \tau_0, \tau_1)
done := discovered \setminus todo
visited := []
b_0, b_1 := false, false
for u \(\in \text{done} \cap \text{dom}(r)\) do
 if \(u \notin \text{keys}(visited)\) then visited(u) := false
 b := FINDLOOP(done, u, u, r(u), visited)
 visited(u) := b
 if \(b\) then
 if \(r(u) \mod 2 = 0\) then \(S_0, b_0 := S_0 \cup \{u\}, \text{true}\)
 else \(S_1, b_1 := S_1 \cup \{u\}, \text{true}\)
 if \(b_0\) then \(S_0 := \text{AttrDefaultWithTau}(S_0, 0, \tau_0)\)
 if \(b_1\) then \(S_1 := \text{AttrDefaultWithTau}(S_1, 1, \tau_1)\)
return \(S_0, S_1, \tau_0, \tau_1\)

The above optimisation can be integrated in the algorithm as follows.
\textbf{PbesInstStructureGraph}(\mathcal{E}, X_{\text{init}}(e_{\text{init}}), R)
\text{init} := R(X_{\text{init}}(e_{\text{init}}))
\text{todo} := \{\text{init}\}
\text{discovered} := \{\text{init}\}
(V, E) := (\emptyset, \emptyset)
S_0 := \emptyset
S_1 := \emptyset
\textbf{while} \text{todo} \neq \emptyset \land X_{\text{init}}(e_{\text{init}}) \notin S_0 \cup S_1 \textbf{do}
 \textbf{choose} X_k(e) \in \text{todo}
 \text{todo} := \text{todo} \setminus \{X_k(e)\}
 \psi^e := R(\varphi_k[d_k := e])
 \psi^e := \text{if } \sigma_k = \mu \text{ then } R(\psi^e[X^e := \text{false}]) \text{ else } R(\psi^e[X^e := \text{true}])
 (b, \psi^e) := R^+(\psi^e)
 \textbf{if} b = \text{true} \text{ then } S_0 := S_0 \cup \{X^e\}
 \textbf{if} b = \text{false} \text{ then } S_1 := S_1 \cup \{X^e\}
 (V, E) := (V, E) \cup SG^0(X^e, \psi^e)
 \text{todo} := \text{todo} \cup (\text{occ}(\psi^e) \setminus \text{discovered})
 \text{discovered} := \text{discovered} \cup \text{occ}(\psi^e)
\text{if} S_0, S_1, \tau_0, \tau_1 := \text{FINDLOOPS}(\text{discovered, todo, } S_0, \text{S}_1, \tau_0, \tau_1) \text{ (executed periodically)}
V := \text{EXTRACTMINIMALSTRUCTUREGRAPH}(V, \text{init, } S_0, S_1, \tau_0, \tau_1)
\text{return } (V, E)

Note that in the call to FINDLOOPS we would like to pass the argument \text{done} = \text{discovered} \setminus \text{todo}. However this set is not available, and it is too expensive to compute. So we pass the larger set \text{discovered}, and we use \text{discovered} \cap \text{dom}(r) = \text{discovered} \setminus \text{todo}.

\textbf{Alternative implementation Optimisation 4} Optimisation 4 searches for a dominion within the set of vertices with the same priority. That is, for rank \(j \) and associated player \(\alpha = j \mod 2 \), one searches for the largest set of vertices \(X_j \subseteq \{v \in V \mid r(u) = j \lor u \notin \text{dom}(r)\} \) satisfying that player \(\alpha \) has a winning strategy within \(X_j \). That is, it is the largest fixed point of the following transformer (assuming \(S_\alpha \) and \(S_{1-\alpha} \) are attractor-maximal):
\[
C_j(X) = \{v \in V \setminus S_{1-\alpha} \mid (r(u) = j \lor u \notin \text{dom}(r)) \land
(d(v) = \nabla \land \alpha = 0 \Rightarrow ((X \cup S_\alpha) \cap \{u \in V \mid v \rightarrow u\} \neq \emptyset))
\lor (d(v) = \nabla \land \alpha = 1 \Rightarrow (\{u \in V \mid v \rightarrow u\} \subseteq X \cup S_\alpha))
\lor (d(v) = \Delta \land \alpha = 1 \Rightarrow ((X \cup S_\alpha) \cap \{u \in V \mid v \rightarrow u\} \neq \emptyset))
\lor (d(v) = \Delta \land \alpha = 0 \Rightarrow (\{u \in V \mid v \rightarrow u\} \subseteq X \cup S_\alpha))\}
\]
A simple algorithm computing this is the following. It uses a modified attractor computation.
\textbf{FindLoops}_2(V, S_0, S_1, \tau_0, \tau_1)\\
J := \{ j \mid \exists u \in V \cap \text{dom}(r) : r(u) = j \}\\
S_0, \tau_0 := \text{AttrDefaultWithTau}(S_0, 0, \tau_0)\\
S_1, \tau_1 := \text{AttrDefaultWithTau}(S_1, 1, \tau_1)\\
\textbf{for } j \in J\\
\quad \alpha := j \text{ mod } 2\\
\quad U_j := \{ u \in V \mid r(u) = j \land (\alpha = 0 \Rightarrow d(u) \neq \text{false}) \land (\alpha = 1 \Rightarrow d(u) \neq \text{true}) \} \setminus S_{1-\alpha}\\
\quad U := U_j \cup S_\alpha\\
\quad X := \text{AttrEqRank}(U, \alpha, V, j)\\
\quad Y := V \setminus \text{AttrDefault}(V \setminus X, 1 - \alpha)\\
\textbf{while } X \neq Y \textbf{ do}\\
\quad \textbf{for } v \in X \setminus S_\alpha \textbf{ do}\\
\quad \quad \textbf{if } (\alpha = 0 \land d(u) = \nabla) \lor (\alpha = 1 \land d(u) = \nabla) \textbf{ then}\\
\quad \quad \quad \textbf{if } v \in U_j \textbf{ then } \tau_{\alpha}(v) := w \textbf{ with } w \in \text{succ}(v) \cap Y\\
\quad \quad \quad \textbf{else } \tau_{\alpha}(v) := \tau(v)\\
\quad \quad S_\alpha := S_\alpha \cup X\\
\quad S_{1-\alpha}, \tau_{1-\alpha} := \text{AttrDefaultWithTau}(S_{1-\alpha}, 1-\alpha, \tau_{1-\alpha})\\
\textbf{return } S_0, S_1, \tau_0, \tau_1\\

where \text{AttrEqRank} is a slightly modified version of the original attractor set computation \text{AttrDefault}, where only predecessors in \textbf{U} with a rank of \textbf{j} are considered:

\textbf{AttrEqRank}(A, \alpha, \textbf{U}, j)\\
\textbf{todo} := \bigcup_{u \in A} \{ \text{pred}^{-j}(u, \textbf{U}) \setminus A \}\\
\textbf{while } \textbf{todo} \neq \emptyset \textbf{ do}\\
\quad \textbf{choose } u \in \textbf{todo}\\
\quad \textbf{todo} := \textbf{todo} \setminus \{ u \}\\
\quad \textbf{if } d(u) = \alpha \lor \text{succ}(u) \subseteq A\\
\quad \quad \textbf{if } d(u) = \alpha \textbf{ then } \tau[u] := v \textbf{ with } v \in A \cap \text{succ}(u)\\
\quad \quad A := A \cup \{ u \}\\
\quad \textbf{todo} := \textbf{todo} \cup \{ \text{pred}^{-j}(u, \textbf{U}) \setminus A \}\\
\textbf{return } \textbf{A}\\

where

\text{pred}^{-j}(u, \textbf{U}) = \{ v \in \textbf{U} \mid (v, u) \in \textbf{E} \land (r(v) = j \lor (v \notin \text{dom}(r) \land d(v) \in \{ \nabla, \nabla \}) \})

The above optimisation can be integrated in the algorithm as follows.
A generalisation of optimisation 4 utilises a so-called fatal attractor. Fatal attractors are based on the observation that those vertices with a dominant priority that are attracted into themselves are won by the player with the parity of this dominant priority. A simple algorithm exploiting this is the following. It uses a modified attractor computation.

\[\text{FatalAttractors}(V, S_0, S_1, \tau_0, \tau_1) \]

\[J := \{ j \mid \exists u \in V \cap \text{dom}(r) : r(u) = j \} \]

\[S_0, \tau_0 := \text{AttrDefaultWithTau}(S_0, 0, \tau_0) \]

\[S_1, \tau_1 := \text{AttrDefaultWithTau}(S_1, 1, \tau_1) \]

\[\text{for } j \in J \]

\[\alpha := j \mod 2 \]

\[U_j := \{ u \in V \mid r(u) = j \land (\alpha = 0 \Rightarrow d(u) \neq \text{false}) \land (\alpha = 1 \Rightarrow d(u) \neq \text{true}) \} \setminus S_1 - \alpha \]

\[U := U_j \cup S_\alpha \]

\[X := \text{AttrMinRank}(U, \alpha, V, j) \]

\[Y := V \setminus \text{AttrDefault}(V \setminus X, 1 - \alpha) \]

\[\text{while } X \neq Y \text{ do} \]

\[\text{for } v \in X \setminus S_\alpha \text{ do} \]

\[\text{if } (\alpha = 0 \land d(u) = \text{▼}) \lor (\alpha = 1 \land d(u) = \text{▲}) \text{ then} \]

\[\text{if } v \in U_j \text{ then } \tau_\alpha(v) := w \text{ with } w \in \text{succ}(v) \cap Y \]

\[\text{else } \tau_\alpha(v) := \tau(v) \]

\[S_\alpha := S_\alpha \cup X \]

\[S_\alpha, \tau_\alpha := \text{AttrDefaultWithTau}(S_\alpha, \alpha, \tau_\alpha) \]

\[\text{return } S_0, S_1, \tau_0, \tau_1 \]
where \(\text{AttrMinRank} \) is a slightly modified version of the original attractor set computation \(\text{AttrDefault} \), where only predecessors in \(U \) with a rank of at least \(j \) are considered:

\[
\text{AttrMinRank}(A, \alpha, U, j) = \bigcup_{u \in A} \left(\text{pred}^{\geq j}(u, U) \setminus A \right)
\]

while \(\text{todo} \neq \emptyset \) do
 choose \(u \in \text{todo} \)
 \(\text{todo} := \text{todo} \setminus \{u\} \)
 if \(d(u) = \alpha \lor \text{suc}(u) \subseteq A \)
 then \(\tau[u] := v \) with \(v \in A \cap \text{suc}(u) \)
 \(A := A \cup \{u\} \)
 \(\text{todo} := \text{todo} \cup \left(\text{pred}^{\geq j}(u, U) \setminus A \right) \)

return \(A \)

where

\[
\text{pred}^{\geq j}(u, U) = \{ v \in U \mid (v, u) \in E \land (r(v) \geq j \lor (v \notin \text{dom}(r) \land d(v) \in \{\uparrow, \downarrow\}) \}
\]

The above optimisation can be integrated in the algorithm as follows.

\[
\text{PbesinstStructureGraph}_5(E, X(\text{init}(e_{\text{init}})), R)
\]

\[
\text{init} := R(X(\text{init}(e_{\text{init}})))
\]

\[
\text{todo} := \{\text{init}\}
\]

\[
\text{discovered} := \{\text{init}\}
\]

\[
(V, E) := (\emptyset, \emptyset)
\]

\[
S_0 := \emptyset
\]

\[
S_1 := \emptyset
\]

while \(\text{todo} \neq \emptyset \land X(\text{init}(e_{\text{init}})) \notin S_0 \cup S_1 \) do
 choose \(X_k(e) \in \text{todo} \)
 \(\text{todo} := \text{todo} \setminus \{X_k(e)\} \)
 \(\psi^e := R(\phi_k[d_k := e]) \)
 \(\psi^e := \text{if } \sigma_k = \mu \text{ then } R(\psi^e[X^e := \text{false}] \text{ else } R(\psi^e[X^e := \text{true}]) \)
 \((b, \psi^e) := R(\psi^e) \)
 if \(b = \text{true} \) then \(S_0 := S_0 \cup \{X^e\} \)
 if \(b = \text{false} \) then \(S_1 := S_1 \cup \{X^e\} \)
 \((V, E) := (V, E) \cup SG^0(X^e, \psi^e) \)
 \(\text{todo} := \text{todo} \cup (\text{occ}(\psi^e) \setminus \text{discovered}) \)
 \(\text{discovered} := \text{discovered} \cup \text{occ}(\psi^e) \)
 \([S_0, S_1, \tau_0, \tau_1] := \text{FatalAttractors}(V, S_0, S_1, \tau_0, \tau_1) \) (executed periodically)
 \(V := \text{ExtractMinimalStructureGraph}(V, init, S_0, S_1, \tau_0, \tau_1) \)

5.8 Optimisation 6

Optimisation 6 is a slightly different fatal attractor computation that is very close to the original one by Michael Huth, Jim Huan-Pu Kuo, and Nir Piterman.
AttrMinRankOriginal\(A, \alpha, U, j\)

\{compute the \(\alpha\)-min attractor into the set \(A\), restricted to vertices in \(U\)\}

todo := \(\bigcup_{u \in A}(\text{pred}^{\geq j}(u, U))\)

\(X := \{u \in \text{todo} \cap A \mid d(u) = \alpha \lor \text{succ}(u) \subseteq A\}\)

while todo \(\neq \emptyset\) do

choose \(u \in \text{todo}\)

todo := todo \(\setminus \{u\}\)

if \(d(u) = \alpha\) then

\(\tau[u] := v\) with \(v \in (A \cup X) \cap \text{succ}(u)\)

\(X := X \cup \{u\}\)

todo := todo \(\cup (\text{pred}^{\geq j}(u, U) \setminus X)\)

return \(X\)

FatalAttractorsOriginal\(V, S_0, S_1, \tau_0, \tau_1\)

\(J := \{j \mid \exists u \in V : r(u) = j\}\)

\(S_0, \tau_0 := \text{AttrDefaultWithTau}(S_0, 0, \tau_0)\)

\(S_1, \tau_1 := \text{AttrDefaultWithTau}(S_1, 1, \tau_1)\)

for \(j \in J\)

\(\alpha := j \mod 2\)

\(U_j := \{u \in V \mid r(u) = j \land (\alpha = 0 \Rightarrow d(u) \neq \text{false}) \land (\alpha = 1 \Rightarrow d(u) \neq \text{true})\}\setminus S_{1-\alpha}\)

\(X := \emptyset\)

while \(U_j \neq \emptyset \land U_j \neq X\)

\(X := U_j\)

\(Y := \text{AttrMinRankOriginal}(X \cup S_\alpha, \alpha, V, j)\)

if \(U_j \subseteq Y\)

for \(v \in Y \setminus S_\alpha\) do

if \((\alpha = 0 \land d(u) = \text{▼}) \lor (\alpha = 1 \land d(u) = \text{▲})\) then

if \(v \in U_j\) then \(\tau_\alpha(v) := w\) with \(w \in \text{succ}(v) \cap Y\)

else \(\tau_\alpha(v) := \tau(v)\)

\(S_\alpha := S_\alpha \cup Y\)

\(S_\alpha, \tau_\alpha := \text{AttrDefaultWithTau}(S_\alpha, \alpha, \tau_\alpha)\)

break

else

\(U_j := U_j \cap Y\)

return \(S_0, S_1, \tau_0, \tau_1\)

Note for setting strategy: when \(U_j \subseteq Y\), we should set a strategy for all vertices \(v \in U_j \setminus S_\alpha\) as follows:

for each \(v \in V_\alpha \cap (U_j \setminus S_\alpha)\), define \(\tau(v) \in \{u \in Y \mid v \rightarrow u\}\).

5.9 Optimisation 7

In optimisation 7 the sets \(S_0\) and \(S_1\) are extended by solving a partial game.
\text{PbesInstStructureGraph}_7(\mathcal{E}, X_{\text{init}}(e_{\text{init}}), R)
\begin{align*}
\text{init} & := R(X_{\text{init}}(e_{\text{init}})) \\
\text{todo} & := \{\text{init}\} \\
\text{discovered} & := \{\text{init}\} \\
(V, E) & := (\emptyset, \emptyset) \\
S_0 & := \emptyset \\
S_1 & := \emptyset \\
\text{while } & \text{ todo } \neq \emptyset \land X_{\text{init}}(e_{\text{init}}) \notin S_0 \cup S_1 \text{ do} \\
& \quad \text{choose } X_k(e) \in \text{ todo} \\
& \quad \text{todo} := \text{ todo} \setminus \{X_k(e)\} \\
& \quad \psi^e := R(\varphi_k[d_k := e]) \\
& \quad \psi^e := \begin{cases}
\text{if } \sigma_k = \mu \text{ then } R(\psi^e[X^e := \text{false}]) & \text{else } R(\psi^e[X^e := \text{true}])
\end{cases} \\
& \quad (b, \psi^e) := R^+(\psi^e) \\
& \quad \text{if } b = \text{true} \text{ then } S_0 := S_0 \cup \{X^e\} \\
& \quad \text{if } b = \text{false} \text{ then } S_1 := S_1 \cup \{X^e\} \\
& \quad (V, E) := (V, E) \cup \mathcal{S}^0_0(X^e, \psi^e) \\
& \quad \text{todo} := \text{ todo} \cup (\text{occ}(\psi^e) \setminus \text{discovered}) \\
& \quad \text{discovered} := \text{discovered} \cup \text{occ}(\psi^e) \\
& \quad S_0, S_1, \tau_0, \tau_1 := \text{PartialSolve}(V, \text{ todo}, S_0, S_1, \tau_0, \tau_1) \hspace{1em} \text{(executed periodically)} \\
& \quad V := \text{ExtractMinimalStructureGraph}(V, \text{init}, S_0, S_1, \tau_0, \tau_1) \\
& \quad \text{return } (V, E)
\end{align*}
where \text{PartialSolve} is defined as
\begin{align*}
\text{PartialSolve}(V, \text{ todo}, S_0, S_1, \tau_0, \tau_1) & \begin{cases}
\text{use the solver to compute an over and underapproximation} \\
S_0, \tau_0 := \text{AttrDefaultWithTau}(S_0, 0, \tau_0) \\
S_1, \tau_1 := \text{AttrDefaultWithTau}(S_1, 1, \tau_1) \\
(W_0, W_1) := \text{SolveRecursive}(V \setminus (S_1 \cup \text{AttrDefaultNoStrategy}(S_0 \cup \text{ todo}, 0))) \\
\text{for } v \in W_1 \setminus S_1 \text{ do} \\
& \quad \text{if } d(u) = \uparrow \text{ then } \tau_1(v) := \tau(v) \\
S_1 := S_1 \cup W_1 \\
(W_0, W_1) := \text{SolveRecursive}(V \setminus (S_0 \cup \text{AttrDefaultNoStrategy}(S_1 \cup \text{ todo}, 1))) \\
\text{for } v \in W_0 \setminus S_0 \text{ do} \\
& \quad \text{if } d(u) = \downarrow \text{ then } \tau_0(v) := \tau(v) \\
S_0 := S_0 \cup W_0 \\
\text{return } S_0, S_1, \tau_0, \tau_1
\end{cases}
\end{align*}