
Enumerator

Wieger Wesselink

January 19, 2019

This document specifies an algorithm for enumeration. Let ϕ be an expres-
sion of type T , let v = FV (ϕ) be the list of free variables occurring in ϕ, and
let accept be a predicate function on expressions of type T . We define a solu-
tion of ϕ as a ground term consisting of constructors only, that is obtained by
assigning values to the variables in v such that accept(ϕ) evaluates to true. The
enumeration algorithm iteratively computes solutions of the expression ϕ.

Let R be a rewriter on expressions of type T , let r be a rewriter on data
expressions, and let σ a substitution on data variables that is applied during
rewriting with R. We assume that for each sort S a set of constructor functions
constructors(S) is defined, such that constructors(sort(d)) 6= ∅ for all d ∈ v. A
precondition of the algorithm is that for all vi ∈ v we have σ(vi) = vi.

Enumerate(v, ϕ, accept, R, r, σ)
P := [〈v,R(ϕ, σ)〉]
Ω := ∅
while P 6= ∅ do

let 〈v, ϕ〉 = head(P )
P := tail(P )
let v = [v1, . . . , vn]
if accept(ϕ) then

if v = [] then
Ω := Ω ∪ {ϕ}

else
if constructors(sort(v1)) 6= ∅ then

for c ∈ constructors(sort(v1)) do
let c : D1 × . . .×Dm → sort(v1)
choose y1, . . . , ym such that yi /∈ {v1, . . . , vn} ∪ FV (ϕ), for i = 1, · · · ,m
ϕ′ := R(ϕ, σ[v1 := r(c(y1, . . . , ym))])
if ϕ′ = ϕ then

P := P ++[〈[v2, . . . , vn], ϕ′〉]
else

P := P ++[〈[v2, . . . , vn, y1, . . . , ym], ϕ′〉]
else

error
return Ω

1



where ε is the empty substitution.

Remark 1 The algorithm works both for data expressions and PBES expres-
sions.

Remark 2 In the case of data expressions, R and r may coincide.

Remark 3 The algorithm can be easily extended such that it also returns the
assignments corresponding a solution.

Remark 4 The most common use case is to take an expression ϕ of type Bool,
and to choose accept(ϕ) ≡ ϕ 6= false. Then it can for example be used to
compute all assignments to FV (ϕ) that cause a condition ϕ to be evaluated to
true.

The enumeration can be extended to finite sets and functions by adding

else if sort(v1) = Set(E) with E finite then
for e ∈ subsets(E) do

P := P ++[〈[v2, . . . , vn], R(ϕ, σ[v1 := e])〉]
else if sort(v1) = D1 × . . .×Dm → D then

for f ∈ functions(sort(v1)) do
P := P ++[〈[v2, . . . , vn], R(ϕ, σ[v1 := f ])〉]

2


