Enumerator

Wieger Wesselink
January 19, 2019

This document specifies an algorithm for enumeration. Let

 be an expres-

sion of type T', let v = FV (¢) be the list of free variables occurring in ¢, and
let accept be a predicate function on expressions of type T. We define a solu-
tion of ¢ as a ground term consisting of constructors only, that is obtained by
assigning values to the variables in v such that accept(p) evaluates to true. The
enumeration algorithm iteratively computes solutions of the expression (.

Let R be a rewriter on expressions of type T, let r be a rewriter on data
expressions, and let ¢ a substitution on data variables that is applied during
rewriting with R. We assume that for each sort S a set of constructor functions

constructors(S) is defined, such that constructors(sort(d)) # 0

foralld e v. A

precondition of the algorithm is that for all v; € v we have o(v;) = v;.

ENUMERATE (v, @, accept, R, r, o)
P = [(v, R(p,0))]
Q:=10
while P # () do
let (v,) = head(P)

P = tail(P)
let v =[vy,..., 0]
if accept(p) then
if v =] then
Q:=QU{p}
else

if constructors(sort(vy)) # (0 then
for ¢ € constructors(sort(vy)) do
let ¢c: Dy x ... x D, — sort(vy)
choose ¥, ..., ym such that y; ¢ {vy,
(pl = R(@v 0'[111 = T(c(yh v 7y’m))])
if ¢ =¢ then
pP:=P HK[”Q? e 71)77.]3 $0/>]
else

e U fUFV (), fori=1,---

P = PH[([’U27"'7vn>y1a"'7ym]7%0/>}

else
error
return)

where € is the empty substitution.

Remark 1 The algorithm works both for data expressions and PBES expres-
stons.

Remark 2 In the case of data expressions, R and r may coincide.

Remark 3 The algorithm can be easily extended such that it also returns the
assignments corresponding a solution.

Remark 4 The most common use case is to take an expression ¢ of type Bool,
and to choose accept(p) = ¢ # false. Then it can for example be used to
compute all assignments to FV () that cause a condition ¢ to be evaluated to
true.

The enumeration can be extended to finite sets and functions by adding

else if sort(vy) = Set(F) with E finite then
for e € subsets(E) do
P := P 4++[([va, ...,], R(p,0lv1 := €])}]
else if sort(vy) =Dj X ...x D,, = D then
for f € functions(sort(vy)) do
P =P ++[([va, ..., va], R(ep, o[v1 == []))]

