|
data_expression & | mcrl2::data::real_zero () |
|
data_expression & | mcrl2::data::real_one () |
|
data_expression & | mcrl2::data::real_minus_one () |
|
data_expression | mcrl2::data::min (const data_expression &e1, const data_expression &e2, const rewriter &) |
|
data_expression | mcrl2::data::max (const data_expression &e1, const data_expression &e2, const rewriter &) |
|
bool | mcrl2::data::is_closed_real_number (const data_expression &e) |
|
bool | mcrl2::data::is_negative (const data_expression &e, const rewriter &r) |
|
bool | mcrl2::data::is_positive (const data_expression &e, const rewriter &r) |
|
bool | mcrl2::data::is_zero (const data_expression &e) |
|
application | mcrl2::data::real_times (const data_expression &arg0, const data_expression &arg1) |
|
application | mcrl2::data::real_plus (const data_expression &arg0, const data_expression &arg1) |
|
application | mcrl2::data::real_divides (const data_expression &arg0, const data_expression &arg1) |
|
application | mcrl2::data::real_minus (const data_expression &arg0, const data_expression &arg1) |
|
application | mcrl2::data::real_negate (const data_expression &arg) |
|
application | mcrl2::data::real_abs (const data_expression &arg) |
|
data_expression | mcrl2::data::rewrite_with_memory (const data_expression &t, const rewriter &r) |
|
std::string | mcrl2::data::pp (const linear_inequality &l) |
|
template<class TYPE > |
std::string | mcrl2::data::pp_vector (const TYPE &inequalities) |
| Print the vector of inequalities to stderr in readable form.
|
|
std::string | mcrl2::data::detail::pp (const detail::lhs_t &lhs) |
|
detail::comparison_t | mcrl2::data::detail::negate (const detail::comparison_t t) |
|
std::string | mcrl2::data::detail::pp (const detail::comparison_t t) |
|
atermpp::function_symbol | mcrl2::data::detail::f_variable_with_a_rational_factor () |
|
void | mcrl2::data::detail::set_factor_for_a_variable (detail::map_based_lhs_t &new_lhs, const variable &x, const data_expression &e) |
|
lhs_t | mcrl2::data::detail::set_factor_for_a_variable (const lhs_t &lhs, const variable &x, const data_expression &e) |
|
const lhs_t | mcrl2::data::detail::map_to_lhs_type (const map_based_lhs_t &lhs) |
|
const lhs_t | mcrl2::data::detail::map_to_lhs_type (const map_based_lhs_t &lhs, const data_expression &factor, const rewriter &r) |
|
bool | mcrl2::data::detail::is_well_formed (const lhs_t &lhs) |
|
const lhs_t | mcrl2::data::detail::remove_variable_and_divide (const lhs_t &lhs, const variable &v, const data_expression &f, const rewriter &r) |
|
void | mcrl2::data::detail::emplace_back_if_not_zero (std::vector< detail::variable_with_a_rational_factor > &r, const variable &v, const data_expression &f) |
|
template<application Operation> |
const lhs_t | mcrl2::data::detail::meta_operation_constant (const lhs_t &argument, const data_expression &v, const rewriter &r) |
|
template<class OPERATION > |
lhs_t | mcrl2::data::detail::meta_operation_lhs (const lhs_t &argument1, const lhs_t &argument2, OPERATION operation, const rewriter &r) |
|
const lhs_t | mcrl2::data::detail::add (const data_expression &v, const lhs_t &argument, const rewriter &r) |
|
const lhs_t | mcrl2::data::detail::subtract (const lhs_t &argument, const data_expression &v, const rewriter &r) |
|
const lhs_t | mcrl2::data::detail::multiply (const lhs_t &argument, const data_expression &v, const rewriter &r) |
|
const lhs_t | mcrl2::data::detail::divide (const lhs_t &argument, const data_expression &v, const rewriter &r) |
|
const lhs_t | mcrl2::data::detail::add (const lhs_t &argument, const lhs_t &e, const rewriter &r) |
|
const lhs_t | mcrl2::data::detail::subtract (const lhs_t &argument, const lhs_t &e, const rewriter &r) |
|
atermpp::function_symbol | mcrl2::data::detail::linear_inequality_less () |
|
atermpp::function_symbol | mcrl2::data::detail::linear_inequality_less_equal () |
|
atermpp::function_symbol | mcrl2::data::detail::linear_inequality_equal () |
|
linear_inequality | mcrl2::data::subtract (const linear_inequality &e1, const linear_inequality &e2, const data_expression &f1, const data_expression &f2, const rewriter &r) |
| Subtract the given equality, multiplied by f1/f2. The result is e1-(f1/f2)e2,.
|
|
bool | mcrl2::data::is_inconsistent (const std::vector< linear_inequality > &inequalities_in, const rewriter &r, const bool use_cache) |
| Determine whether a list of data expressions is inconsistent.
|
|
void | mcrl2::data::count_occurrences (const std::vector< linear_inequality > &inequalities, std::map< variable, std::size_t > &nr_positive_occurrences, std::map< variable, std::size_t > &nr_negative_occurrences, const rewriter &r) |
|
template<class Variable_iterator > |
std::set< variable > | mcrl2::data::gauss_elimination (const std::vector< linear_inequality > &inequalities, std::vector< linear_inequality > &resulting_equalities, std::vector< linear_inequality > &resulting_inequalities, Variable_iterator variables_begin, Variable_iterator variables_end, const rewriter &r) |
| Try to eliminate variables from a system of inequalities using Gauss elimination.
|
|
bool | mcrl2::data::is_a_redundant_inequality (const std::vector< linear_inequality > &inequalities, const std::vector< linear_inequality > ::iterator i, const rewriter &r) |
| Indicate whether an inequality from a set of inequalities is redundant.
|
|
void | mcrl2::data::remove_redundant_inequalities (const std::vector< linear_inequality > &inequalities, std::vector< linear_inequality > &resulting_inequalities, const rewriter &r) |
| Remove every redundant inequality from a vector of inequalities.
|
|
static void | mcrl2::data::pivot_and_update (const variable &xi, const variable &xj, const data_expression &v, const data_expression &v_delta_correction, std::map< variable, data_expression > &beta, std::map< variable, data_expression > &beta_delta_correction, std::set< variable > &basic_variables, std::map< variable, detail::lhs_t > &working_equalities, const rewriter &r) |
|
Contains a class linear_inequality to represent mcrl2 data expressions that are linear equalities, or inequalities. Furthermore, it contains some operations on these linear inequalities, such as Fourier-Motzkin elimination.
Definition in file linear_inequalities.h.